A Finite Element Method for First-Order Hyperbolic Systems
نویسنده
چکیده
A new finite element method is proposed for the numerical solution of a class of initial-boundary value problems for first-order hyperbolic systems in one space dimension. An application of our procedure to a system modeling gas flow in a pipe is discussed. Asymptotic error estimates are derived in the L norm in space.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملDiscontinuous Galerkin finite element methods for second order hyperbolic problems
In this paper, we prove a priori and a posteriori error estimates for a finite element method for linear second order hyperbolic problems (linear wave equations) based on using spacetime finite element discretizations (for displacements and displacement velocities) with (bilinear) basis functions which are continuous in space and discontinuous in time. We refer to methods of this form as discon...
متن کاملFinite Element Collocation Methods for First Order Systems
Finite element methods and the associate collocation methods are considered for solving first-order hyperbolic systems, positive in the sense of Friedrichs. Applied in the case when the meshes are rectangle, those methods lead for example to the successfully used box scheme for the heat equation or D.S.N. scheme for the neutron transport equation. Generalizations of these methods are described ...
متن کاملInvariant Domains Preserving Arbitrary Lagrangian Eulerian Approximation of Hyperbolic Systems with Continuous Finite Elements
A conservative invariant domain preserving arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements, and is first-order accurate in space. One original element of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does...
متن کاملInvariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems
We propose a numerical method to solve general hyperbolic systems in any space dimension using forward Euler time stepping and continuous finite elements on non-uniform grids. The properties of the method are based on the introduction of an artificial dissipation that is defined so that any convex invariant sets containing the initial data is an invariant domain for the method. The invariant do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010